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ABSTRACT

With modern fast sequencing tech.niq_ueal‘E and suitable computer programs
it is now possible to sequence whole genomes without the need of restriction
maps. This paper describes computer programs that can be used to order both
sequence gel readings and clones. A method of coding for uncertainties im
gel readings is described. These programs are available on regquest,

INTRODUCTION

1t became clear during the sequencing of bacteriophage $X1Th Ill]h'.rhEl that
it was necegsary to use computers to handle and analyse the data. Later,
while the very similar DNA sequence of bacteriophage Gb b s being determined,
the computer wvas used to compare and align the G4 sequence with that of FX1TA.
Further advances in DNA sequencing uthndaS'E and cloning techniques have been
made and work is in progress in a number of laboratories on sequences many
times the length of #XAThL.

The continuing rapid fall in the cost of computer components is making
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Presenter Notes
Presentation Notes
Contigs are sequences that are continuously represented by sequences in the DNA sequencing reads


Assembly strategies

1. Reference-guided assembly
— Mapping reads to a reference

Reference genome

Reads

Consensus
sequence in
contigs
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Assembly strategies

2. De novo assembly

— Construct genome sequence from overlap between reads

Contigs

Reads




Reference-guided assembly

 We need a closely related reference genome:
— Same species

* Reference genome leads to biases in the assembly

— Genome structure
* Insertions, deletions, rearrangements

* |f we only have a distantly related reference:
- we need to be more permissive when aligning reads
—> this will lead to more possible errors



Presenter Notes
Presentation Notes
Reference-guided assembly is not considered appropriate for assembly of new species. 
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Presenter Notes
Presentation Notes
We know from the tree of life that there are many bacterial species that we have not seen before. 
Tree of life: made in 2016


Coverage (ambiguous term!)

A

Depth
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Horizontal coverage

* Depth (vertical coverage):

— Average number of reads that cover each nucleotide in the
assembly

— Corresponds to the abundance of a sequence in the sample

* Horizontal coverage:

— Percentage of the target genome that has been (re)covered
after the assembly



Presenter Notes
Presentation Notes
Depth: Number of times that a nucleotide in a target genome has been sequenced or recovered
Horizontal coverage: percentage of the target in a sequence recovered in the assembled contigs for its scaffolds




De novo sequence assembly

* Requires sufficient sequencing (coverage x depth)
* Breaks on repeats and low-coverage regions

e Algorithms
— Greedy extension
— Overlap-layout-consensus
— De Bruijn graph




= W

Greedy extension

Sequences (reads) (reads/contigs) <—
Pairwise all-vs-all similarities
Find best matching pair

Collapse/assemble

Greedy extension

All reads == Start with any read —  Extend — Final contigs
e E—
—— u
Repeat with

different read

Source: https://carpentries-lab.github.io/metagenomics-analysis/04-assembly/




Greedy extension

Sequences (reads) (reads/contigs) <—
Pairwise all-vs-all similarities
Find best matching pair

B W

Collapse/assemble

 Works well for a few long reads (1t generation)

* Does not work for many short reads (2"9 gen)

— All-vs-all comparisons are computationally
“expensive” to calculate

— Short sequences may have multiple best matches




Repetitive sequences

repeat — repeat

A — D
£ C

D C

Reads A-D are from a region with two long repeats
— Long means longer than the read length

Greedy approach would first join A-D with the largest overlap and
then place B-C in a separate contig = this is i

Resolving this requires a global view of all the possibilities before
joining two reads: a graph




Assembly with a graph-approach

* A graph contains nodes and edges

node edge (connection)
* Two types of graphs are often used
in sequence assembly

— Overlap-layout-consensus
— De Bruijn Graph

Nicolaas Govert (Dick) de Bruijn
1918-2012



Overlap layout consensus

1. Identify all overlaps between reads
— Use cutoffs: minimum overlap and percent identity

K CTCATAAAGTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCT N
TTTGTAATCTTATTGGTTGGCTTAAACCTAAAAGAGTTGAAGTTAA
J L GTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCTTATTGGTT
CTTGATACTAATGCTTTTTGTAATCTTATTGGTTGGCTTAAAC “A
CTAGTATTATTGCTGCTCATAAAGTAGCTCCAGCTCATCTTGATACTAAT

2. Make graph of overlap connections

— Nodes: reads

— Edges: overlaps
3. Find path that contains all data (= _lI

— Hamiltonian path

— No efficient algorithm available
4. Determine consensus at each position

CTAGTATTATTGCTGCTCATAAAGTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCTTATTGGTTGGCTTAAACCTAAAAGAGTTGAAGTTAA



Presenter Notes
Presentation Notes
Hamiltonian path; path that passes every node once (concept known from mathematics) – difficult problem for computers (called np-complete), especially with much data forming large graphs
 - makes overlap-layout consensus algorithm less suitable for high throughput sequencing


De Bruijn graph

1. Break up all sequencing reads into shorter words of
length k (k-mers)

— Number of k-mers = number of nucleotides in genome

K CTCATAAAGTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCT N
TTTGTAATCTTATTGGTTGGCTTAAACCTAAAAGAGTTGAAGTTAA
L GTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCTTATTGGTT
J CTTGATACTAATGCTTTTTGTAATCTTATTGGTTGGCTTAAAC M
CTAGTATTATTGCTGCTCATAAAGTAGCTCCAGCTCATCTTGATACTAAT




De Bruijn graph

2. Make graph of sequential k-mers in reads

— Nodes: k-mers
— Edges: linked in the data (reads)

Edges: adjacency in reads

K CTCATAAAGTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCT N
TTTGTAATCTTATTGGTTGGCTTAAACCTAAAAGAGTTGAAGTTAA
L GTAGCTCCAGCTCATCTTGATACTAATGCTTTTTGTAATCTTATTGGTT

CTTGATACTAATGCTTTTTGTAATCTTATTGGTTGGCTTAAAC M
CTTGATACTAATGCTTTTTGTAATCTTAT
TTGATACTAATGCTTTTTGTAATCTTATT
TGATACTAATGCTTTTTGTAATCTTATTG
GATACTAATGCTTTTTGTAATCTTATTGG
ATACTAATGCTTTTTGTAATCTTATTGGT
TACTAATGCTTTTTGTAATCTTATTGGTT
ACTAATGCTTTTTGTAATCTTATTGGTTG
CTAATGCTTTTTGTAATCTTATTGGTTGG
— TAATGCTTTTTGTAATCTTATTGGTTGGC
L AATGCTTTTTGTAATCTTATTGGTTGGCT
NOdes' k_mers ATGCTTTTTGTAATCTTATTGGTTGGCTT
TGCTTTTTGTAATCTTATTGGTTGGCTTA
GCTTTTTGTAATCTTATTGGTTGGCTTAA
CTTTTTGTAATCTTATTGGTTGGCTTAAA
J TTTTTGTAATCTTATTGGTTGGCTTAAAC

P
I

29

CTAGTATTATTGCTGCTCATAAAGTAGCTCCAGCTCATCTTGATACTAAT



All reads

De Bruijn graph

De Brujin Graphs

Divide reads in Create k-mers Choose paths to

k-mers graph create contigs

k=4

AGTGGTCG GTCGAAAT CCTCGATG AGTGGTCG GGTCGAAA CCTCGATG AGTGGTCG GGTCGAAA CCTCGATG
AGTG GToG CCTC AGTG GGTC CoTe AGTG GGTC CoTC
BTGE TCGA CTCG GTGG GTCG CTCG GTGG GTCG CTCG
TGGT CoAA TCGA TGGT/ TCGA = TCGA TGGT/ TCGA [~ TCGA
GGTC GAAA CGAT GGTC / CGAA COAT GGTC / CoAA CoAT
GTCG ABAT GATG GTCG G GATG GICG GAAA GATG
'
AGTGGTCGAAA

Source: https://carpentries-lab.github.io/metagenomics-analysis/04-assembly/
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De Bruijn graph

3. Find path that contains all data (= all edges)

— Eulerian path
— Efficient algorithm available - e e
§ 2 —

» e

* Inan optimal sequencing run of a repeat-less genome,
there is one path connecting all nodes

* In practice (especially in metagenomes) there are many
possible structures in the graph

 Edge width represents the number of linking reads
(depth)




Possible structures in De Bruijn graphs

<iii>

Cycle: path converges on itself
— Repeated region on the same contig

Frayed rope: converge then diverge
— Repeated region on different contigs

Bubble: paths diverge then converge
— Sequencing error in the middle of a read
— Polymorphisms

Spur: short dead-ends
— Sequencing error at the end of a read
— Zero coverage shortly after end of repeat

>.,
<...

-
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Short-read assembly tool: SPAdes

JOURNAL OF COMPUTATIONAL BloLocy

Many Aven Liskert, I, pullinlins Journals Search Alerts

-

PMCID: PMC3342519
PMID: 22506599

J Comput Biol 2012 May; 19(5): 455-477.
doi: 10.1089/cmb.2012.0021

SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell
Sequencing
Anton Bankevich,!+? Sergey Nurk,!? Dmitry Antipov,’ Alexey A. Gurevich, " Mikhail Dvorkin, ! Alexander S. Kulikov, 3

Valery M. Lesin,' Sergey |. Nikolenko,"-* Son Pham * Andrey D. Prjibelski,! Alexey V. Pyshkin,! Alexander V. Sirotkin,
Nikolay Vyahhi,! Glenn Tesler,* Max A AlekseyevE'-% and Pavel A. Pevzner'#

= Author information = Copyright and License information  PMC Disclaimer

Abstract Goto: »

The lion's share of bacteria in various environments cannot be cloned in the laboratory and
thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is
to complement gene-centric metagenomic data with whole-genome assemblies of
uncultivated organisms. Assembly of single-cell data is challenging because of highly non-
uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We
describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and
demonstrate that it improves on the recently released E+V-SC assembler (specialized for
single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data).
SPAdes generates single-cell assemblies, providing information about genomes of
uncultivatable bacteria that vastly exceeds what may be obtained via traditional
metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). Itis
distributed as open source software.

Key words: assembly, de Bruijn graph, single cell, sequencing, bacteria

FIG. 2.

Standard and multisized de Bruijn graph. A circular GENOME CATCAGATAGGA is covered by a set READS consisting
of nine 4-mers, {ACAT, CATC, ATCA, TCAG, CAGA, AGAT, GATA, TAGG, GGAC}. Three out of 12 possible 4-mers from
GENOME are missing from READS (namely {ATAG,AGGA,GACA}), but all 3-mers from GENOME are present in READS.
[A) The outside circle shows a separate black edge for each 3-mer from Reaps. Dotted red lines indicate vertices
that will be glued. The inner circle shows the result of applying some of the glues. (B) The graph DB(REaDS, 3}
resulting from all the glues is tangled. The three h-paths of length 2 in this graph (shown in blue) correspond to h-
reads ATAG, AGGA, and GACA. Thus READS;3 4 contains all 4-mers from GENOME. (C) The outside circle shows a
separate edge for each of the nine 4-mer reads. The next inner circle shows the graph DB(READS, 4), and the
innermost circle represents the GENOME. The graph DE[READS, 4] is fragmented into 3 connected components. (D)

The multisized de Bruijn graph DB(READS, 3, 4).

In the de Bruijn graph DB(READSs, k), an h-path passing through n vertices

N - -



How to assess assembly quality?

* General assembly performance metrics P

— Length of longest contig —=

— N50, N80 =
— Percentage of matched paired-end reads =~ —==

- Length distribution of open reading frames (ORFs)

Open Reading Frame Viewer

Salmonella enterica subsp. enterica serovar Westhampton plasmid pWE -1, complete sequence
(W = Boumd: 3% Gemehc Code: 11. Bacterial, Anchasal and Plant Plastid
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Presenter Notes
Presentation Notes
ORFs: 3 in every 64 codons should be a stop codon. If you find ORFs with the length of a real protein; indication that assembly represents real biological sequence. Wrong sequence: much shorter ORFs. 


Assembly length statistics: N50 and N8O

Contig .1 LT Contig_N
. So@,alkt‘éﬁtigs from long to short
 N50 = length of contig at 50% of cumulative length
100 70 | 60 | 50 | 50 | 40 | 30 |
" 200 4

400




Assembly length statistics: N50 and N80

Contig 1
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* This measure is less meaningful for metagenomes from
highly diverse communities

Quast

Genome assembly evaluation tool @

QUAST stands for QUality ASsessment Tool. It evaluates genome/metagenome assemblies by computing various
metrics. The current QUAST toolkit includes the general QUAST tool for genome assemblies, MetaQUAST, the
extension for metagenomic datasets, QUAST-LG, the extension for large genomes (e.g., mammalians), and Icarus,

the interactive visualizer for these tools.




Repeats have multiple sinks/sources
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Copyright © 2003 by the Genetics Society of America

Genomic Rearrangements at 171 Operons in Salmonella

R. Allen Helm,* Alison G. Lee,* Harry D. Christman® and Stanley Maloy*"!

*Department of Microbiology, University of 1llinois, Urbana, Illinois 61 801 and ' Center for Microbial Sciences,
San Diego Slate University, San Diego, California 921824614

Manuscript received September 19, 2002
Accepted for publication January 10, 2003

ABSTRACT

Most Salmonella serovars are general pathogens {hat infect a variety of hosts. These “genersﬂist” serovars
cause disease in many animals from reptiles to mammals. In contrast, a few serovars cause disease only
in a specific host. Host-specific serovars can cause a systemic, often fatal disease in one species yet remain
avirulent in other species. Host-specific Salmonella frequently have large genomic rearrangements due
to recombination at the ribosomal RNA (rrn) operons while the generalists consistently have a conserved
chromosomal arrangement. To determine whether this is the result of an intrinsic difference in recombina-
tion frequency or @ consequence of lifestyle difference between generalist and host-specific Salmonella. Hel
we determined the frequency of rearrangements in vitro, Using lacZ genes as portable regions of homolog} m et al. ’ Genetics 2003



Presenter Notes
Presentation Notes
16S present multiple times in single genome.
Not only bioinformatic problem, but also biological, example salmonella who is recombining^RNA operon


Long-read sequencing

Repeat copy 1 Repeat copy 2
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short read assembly

long read assembly

short reads: contig breaks

long reads span repeats

resulting in complete assemblies

Recognizing what is plasmid
and what is chromosomal DNA




Hybrid assembly

= » Longread
M
M M
P, . S— Short reads
M
M M
M
M

- Long-read assembly is used as scaffold

- Short-reads are used to polish the long-read assembly
(SNPs, homopolymer tracts etc)




Hybrid assembly tool: UniCycler
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RESEARCH ARTICLE

Unicycler: Resolving bacterial genome
assemblies from short and long sequencing
reads

Ryan R. Wick®, Louise M. Judd, Claire L. Gorrie, Kathryn E. Holt

Department of Biochamistry and Malecular Biology, Bio21 Molecular Science and Bistechnology Institute,
The University of Melboume, Victoria, Australia

* rwick @gmail.com

Abstract

The lllumina DNA sequencing platform generates accurate but shor reads, which can be
used to produce accurate but fragmented genome assemblies. Pacific Biosciences and
Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can
produce complete genome assemblies, but the sequencing is more expensive and error-
prone. There is significant interest in combining data from these complementary sequencing
technologies to generate more accurate “hybrid” assemblies. However, few tools exist that
truly leverage the benefits of both types of data, namely the accuracy of short reads and

the structural resolving power of long reads. Here we present Unicycler, a new tool for
assembling bacterial genomes from a combination of short and long reads, which produces
assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assem-
bly graph from short reads using the de nove assembler SPAdes and then simplifies the
graph using information from short and long reads. Unicycler uses a novel semi-global
aligner to align long reads to the assembly graph. Tests on both synthetic and real reads
show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid
assemblers, even when long-read depth and accuracy are low. Unicycler is open source
(GPLv3) and available at github.com/rrwick/Unicycler.

This is a PLOS Computational Biology Software paper.

Introduction

Bacterial genomics is currently dominated by Illumina sequencing platforms. [llumina reads
are accurate, have a low cost per base and have enabled widespread use of whole genome
sequencing. However, much Illumina sequencing uses short fragments (500 bp or less) that

Use of Unicycler:
- De novo assembly with only long-reads (miniasm
assembly)

- Other assemblers: Flye, Canu
- De novo assembly with both long- and short-reads
- Most powerful as hybrid assembler:

- Use long-read assembly as scaffold, and

correct sequence with lllumina short-reads
- Racon polishing

- Polishing always necessary




Metagenomics

Metagenomics is the study of genetic material recovered directly from environmental or
clinical samples by a method called sequencing
The study examines the genomic composition of an entire organism, including each of the
microbes that exist within it
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Presenter Notes
Presentation Notes
Much more present in metagenomics sequencing; makes metagenomics more complex than single genome sequencing/assembly



Metagenomics data from many biomes

B S S w

Soil Marine Forest Non-human host

)

Freshwater Grassland  Human gut Human biome

Engineered Air Wastewater Other
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Presentation Notes
All microbiomes are available in public resources, such as Magnify and MG_RAST. We want to sequence/assemble the microbres present in these biomes


Metagenomics Analysis Pipeline

Metagenome

2 Contigs
Unknown genome Filtered Reads

L o 5 e g

O | Sequencing /1 = b g —
: g o ¥

Remove redundant reads using \
Digital Mormalization

Genomes occurring at varying level of

: Contig classification using
abundance in the sample

k-mers and coverage

Eﬁ.ssamhly 9 |_

- — Genomes in
SU Population

() () Contig

— — — __r -"}F_ﬁ j Binning -

e

Ghurye J S, Cepeda-Espinoza V,Pop M. Metagenomic Assembly: Overview, Challenges and Applications.
Yale J Biol Med. 2016 Sep 30;89(3):353-362.




Genome versus metagenome sequencing

 Depending on coverage * Depending on diversity
— Expect single sequence — Expect many sequences
— Contiguous sequence — Fragmented sequences
— Even read depth — Varying read depth

* ldentify sequencing errors « Sequencing errors or

by low coverage natural diversity?

- Clonal sequence — Natural microdiversity

* Repeats consist of * Repeats also include
duplicated genes and closely related strains,

conserved domains horizontal transfer, etc.




Assembly problem: Chimera

In overlap-layout-consensus De Bruijn graph
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Presentation Notes
Low sequence depth: chimeria from green – red - orange


How big is the chimerization problem?

* Assembly algorithms include “chimera protection”
— Break contigs at ambiguities

contigl contig4

~ -

RN contig3 -

- ~
- ~
- ~
- ~
- ~
- ~

contig2
* Chimerization is more frequent between closely
related strains

— Similar sequences

* Investigate the effect of chimerization:

— Use different assembly parameters and assess your
final conclusion

* High stringency - few chimeras
* Low stringency - many chimeras

2000 2500 2000 350 a0 as0 som0 ss0

]
ITAO013= 7 Ak

— Depth profiles .

http://merenlab.org/2019/11/25/visualizing-coverages/



http://merenlab.org/2019/11/25/visualizing-coverages/

How to assess assembly quality for metagenomics?
* General assembly performance metrics
— Longest contig length, N50
— Matched paired-end reads
— Length distribution of open reading frames (ORFs)




How to assess assembly quality for metagenomics?
* General assembly performance metrics
— Longest contig length, N50
— Matched paired-end reads
— Length distribution of open reading frames (ORFs)

* Assembly performance metrics for metagenomes:

— Percentage of data included in the assembly
* Align all the reads back to the assembled contigs
* The best assembly is the one that aligns the most reads
* This means that the assembly “explains” original data well

— Evenness in depth along contig




Metagenomics: Binning of contigs
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Binning

- Scaffolding
- using forward and reverse read-pairs to
make scaffolds from contigs

- GC content
- - K-mer profiles

. Depth and abundance




ilar GC content

Linked contigs have si

52.5%

%GC

30.0%

Iverson et al. Science 2012



k-mer profile
GATTGATT

e Sequences can be divided into shorter
subsequences or k-mers

— k-mers consist of k nucleotides or amino

Gﬁ¥¥ §§¥¥

* A k-mer profile lists the abundances of
all k-mers in a sequence

— For example 3-mers:

— This is characteristic of a genome

— Tetramers (k=4) are often used for binning TT
genomes from metagenomes TTG




k-mer binning
High GC Euryarchaeota (n=25)
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Accurate phylogenetic classification of variable-length
DNA fragments

Alice Carolyn McHardy!, Héctor Garcia Martin?, Aristotelis Tsirigos!, Philip Hugenholtz? & Isidore Rigoutsos!

PhyloPythia uses a multiclass support vector
machine (SVM) classifier with the oligonucleotide composition

of variable-length genome fragments as the input space.

McHardy et al. Nature Methods 2007



Depth and abundance

* The “depth of coverage” of a contig quantitatively
reflects its abundance in a sample

— But there is some noise, depending on the sample prep

DNA isolation
and
library preparation
OOO sequencing Jand assembly




19 contlgs binned by similar depth proflles
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Kraken: taxonomic sequence classification system

B BMC Part of Springer Nature

Figure 1
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Method | Open access | Published: 03 March 2014

Kraken: ultrafast metagenomic sequence classification
using exact alignments

Derrick £ Wood ™ & Steven L Salzberg

Genome Biology 15, Article number: R46 (2014) | Cite this article

125k Accesses | 2409 Citations | 156 Altmetric | Metrics

Sequence classified as belonging to leaf of
) ) . classification (highest-weighted RTL) path
© 4 protocol for this article was published on 28 September 2022

Abstract

The Kraken sequence classification algorithm. To classify a sequence, each k-mer in the

. . L. . sequence is mapped to the lowest common ancestor (LCA) of the genomes that contain that k-mer in a
Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to . . . .
’ database. The taxa associated with the sequence’s k-mers, as well as the taxa’s ancestors, form a

metagenomic DNA sequences. Previous programs designed for this task have been relatively pruned subtree of the general taxonomy tree, which is used for classification. In the classification tree,

slow and computationally expensive, forcing researchers to use faster abundance estimation each node has a weight equal to the number of k-mers in the sequence associated with the node’s
programs, which only classify small subsets of metagenomic data. Using exact alignment of k- taxon. Each root-to-leaf (RTL) path in the classification tree is scored by adding all weights in the path,
mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its and the maximal RTL path in the classification tree is the classification path (nodes highlighted in
fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per yellow). The leaf of this classification path (the orange, leftmost leaf in the classification tree) is the

minute. 009 times faster than Mecablast and 11 times faster than the abundance estimation classification used for the query sequence.




How do we know if the genome is complete?
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HMM ID

PF00162.14
PF00276.15
PF00281.14
PF00297.17
PF00347.18
PF00366.15
PF00380.14
PF00410.14
PF00411.14
PF00416.17
PF00466.15
PF00573.17
PF00750.14
PF01025.14
PF01795.14
TIGR00001
TIGR00002
TIGR00009
TIGR00012
TIGR00019
TIGR00029
TIGR00043
TIGR00059
TIGR00060
TIGR00061
TIGR00062
TIGR00064
TIGR00082
TIGR00086
TIGR00092
TIGR00115
TIGR00116
TIGR00152
TIGR00158
TIGR00165
TIGR00166
TIGR00168
TIGR00234
TIGR00337
TIGR00344
TIGR00362
TIGR00388
TIGR00389
TIGR00392
TIGR00396
TIGR00408
TIGR00409
TIGR00414
TIGR00418
TIGR00420
TIGR00422
TIGR00435
TIGR00436
TIGR00442
TIGR00459
TIGR00460
TIGR00468
TIGR00471
TIGR00472
TIGR00487
TIGR00496
TIGR00575
TIGR00631
TIGR00663
TIGR00775
TIGR00810
TIGR00855
TIGR00922
TIGR00952
TIGR00959
TIGR00963
TIGR00964
TIGR00967
TIGR00981
TIGR01009
TIGRO1011
TIGR01017
TIGR01021
TIGR01024
TIGR01029
TIGR01030
TIGR01031
TIGR01032
TIGR01044
TIGR01049
TIGR01050
TIGR01059
TIGR01063
TIGR01066
TIGR01067
TIGRO1071
TIGR01079
TIGRO1164
TIGRO1169
TIGRO1171
TIGRO1391
TIGR01393
TIGR01632
TIGR01953
TIGR02012
TIGR02013
TIGR02027
TIGR02191
TIGR02350
TIGR02386
TIGR02387
TIGR02397
TIGR02432
TIGR02729
TIGR03263
TIGR03594

AMX AOB NOB CHB1 CHB2 CHB3 CHB4 BCD1 BCD2 BCD3 BCD4 BCD5 CFX1 CFX2 CFX3 OP3 ACD ATM OD1 WS6-1 WS6-2 OP11-10P11-2 HMM Name
I Phosphoglycerate kinase

o
Ribosomal protein L23
[ Ribosomal protein L5
Ribosomal protein L3 I I l —
Ribosomal protein L6

Ribosomal protein $17
— Ribosomal protein S9/S16
Ribosomal protein S8
Ribosomal protein S11
Ribosomal protein S13/S18

] Ribosomal protein L10
Ribosomal protein L4/L1 family

[ tRNA synthetases class | (R)
GrpE

MraW methylase family
rpml_bact: ribosomal protein L35
16: ribosomal protein S16
ibosomal protein L28
bosomal protein L29
priA: peptide chain release factor 1
520: ribosomal protein $20
TIGR00043: metalloprotein, YbeY/UPF0054 family

L17: ribosomal protein L17 .
I | 18_bact: ribosomal protein L18
I - ribosomal protein L21

bosomal protein L27
 signal recognition particle-docking protein FtsY
: ribosome-binding factor A
smpB: SsrA-binding protein
T I N N I T'GR00092: GTP-binding protein YchF
I N O RO B 1 190" actor

tsf: translation elongation factor Ts

TIGR00152: dephospho-CoA kinase — a r e r e I I e S
L9: ribosomal protein L9

$18: ribosomal protein S18

-
-+ r -+ r—r-r-r1+ ;- ‘-~ 7 1 I AN I I M S ribosomal protein S6

----- I I infC: translation initiation laclor IF-3
tyrS: tyrosine--tRNA ligast

PyrG: CTP synthase
alaS: alanine--tRNA ligase
I DnaA: chromosomal replication initiator protein DnaA a re eX p e C e
glyQ: glycine--tRNA ligase, alpha subunit

glyS_dimeric: glycine--tRNA ligase

I i'eS: isoleucine-tRNA ligase

leuS_bact: leucine--tRNA ligase

proS_fam_I: proline--tRNA ligase
proS_fam_Il: proline--tRNA ligase
e S S S R B R 1 1711 5250

[ L [ ¢ 10 ] I [ (hrS: threonine--{RNA ligase
[

trmU: tRNA (5
valS: valine--tRNA ligase
cysS: cysteine--tRNA ligase

[] (]
era: GTP-binding protein Era
I O I I B B hisS: histidine--tRNA ligase
NI 2spS_bact: aspartate—tRNA ligase
| fmt: methiony-tRNA formyltransferase

pheS: phenylalanine--tRNA ligase, alpha subunit
pheT_arch: phenylalanine--tRNA ligase, beta subunit
pheT_bact: phenylalanine-tRNA ligase, beta subunit
IF-2: translation initiation factor IF-2
frr: ribosome recycling factor

dnlj: DNA ligase, NAD-dependent

uvrb: excinuclease ABC subunit B .
dnan: DNA polymerase IIl, beta subunit

NhaD: Na+/H+ antiporter, NhaD family

secG: preprotein translocase, SecG subunit
I L 12: ribosomal protein L7/L12

nusG: factor NusG
S$15_bact: ribosomal protein S15
ffh: signal recognition particle protein

°
secA: preprotein translocase, SecA subunit
secE_bact: preprotein translocase, SecE subunit — -
I 320501007 preprotein translocase, SecY subunit
rpsL_bact: ribosomal protein S$12
rpsC_bact: ribosomal protein S3 .

rpsB_bact: ribosomal protein S2
rpsD_bact: ribosomal protein S4

rpsE_bact: ribosomal protein S5
rplS_bact: ribosomal protein L19
rpsG_bact: ribosomal protein S7
rpmH_bact: ribosomal protein L34
rpmF_bact: ribosomal protein L32

rpIT_bact: ribosomal protein L20
rplV_bact: ribosomal protein L22

rpsJ_bact: ribosomal protein S10
rpsS_bact: ribosomal protein S19
gyrB: DNA gyrase, B subunit
gyrA: DNA gyrase, A subunit

rpIM_bact: ribosomal protein L13

rpIN_bact: ribosomal protein L14

rplO_bact: ribosomal protein L15

rplX_bact: ribosomal protein L24
rpIP_bact: ribosomal protein L16
rplA_bact: ribosomal protein L1

rpIB_bact: ribosomal protein L2

dnaG: DNA primase

W lepA: GTP-binding protein LepA

L11_bact: ribosomal protein L11

NusA: transcription termination factor NusA

tigNar.nJecA: protein RecA
rpoB: DNA-directed RNA polymerase, beta subunit
rpoA: DNA-directed RNA polymerase, alpha subunit

I RNaselll: ribonuclease Il

prok_dnaK: chaperone protein DnakK

rpoC_TIGR: DNA-directed RNA polymerase, beta' subunit
rpoC1_cyan: DNA-directed RNA polymerase, gamma subunit
| I I N N inaX _nterm: DNA polymerase Il subunit gamma and tau
| lysidine_TilS_N: tRNA(lle)-lysidine synthetase

— 1 ] I I N BN Obg_CgtA: Obg family GTPase CgtA

— e isted GTPase Engh Speth et al. Nature Comm. 2016




Overview

CheckM provides a set of tools for assessing the quality of
genomes recovered from isolates, single cells, or
metagenomes. It provides robust estimates of genome
completeness and contamination by using collocated sets
of genes that are ubiquitous and single-copy within a
phylogenetic lineage. Assessment of genome quality can
also be examined using plots depicting key genomic
characteristics (e.g., GC, coding density) which highlight
seguences outside the expected distributions of a typical
genome. CheckM also provides tools for identifying
genome bins that are likely candidates for merging based
on marker set compatibility, similarity in genomic
characteristics, and proximity within a reference genome
tree.

News

« CheckM v1.1.6 was released on April 9, 2022 and
requires Python 3.

Use CheckM

Before using CheckM you need a set of putative genomes.

These may come from isolates, single cells, or
metagenomic data. Our companion tool Groophd can be
used to recover genomes from metagenomic data.

For information on using CheckiM visit the wiki.

Cite CheckM

If you find this software useful, we'd love for you to cite us:

« Parks DH, Imelfort M, Skennerton CT, Hugenholiz F.
Tyson GW. 2014. Assessing the quality of microbial
genomes recovered from isolates, single cells, and
metagenomes. Genome Research, 25: 1043-1055.

Checkm; tool for assessing the quality of genomes

CheckM

Talk to us

We'd love to hear from you. All comments and suggestions
can be sent to Donovan Parks:

« donovan_dot_parks_at gmail_dot_com

Licensing

CheckM is licensed using the GNU General Public License
version 3 as published by the Free Software Foundation.

The CheckM logo is a product of Mike Imelfort's mind.

This site was created using a template created by the
wonderful people at bootswatch.




Summary

Assembly of reads into contigs

- Reference-based

- De novo assembly
Coverage and depth
Assembly algorithms
Assembly quality (N50, ORF length)
Problems with repeats and chimeras
Metagenomics assembly, binning

Tools: SPAdes, UniCycler, Kraken, Checkm
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